Основные понятия моделирования
Модель - объект или описание объекта, системы для замещения (при определенных условиях предложениях, гипотезах) одной системы (т.е. оригинала) другой системы для изучения оригинала или воспроизведения его каких - либо свойств. Модель - результат отображения одной структуры на другую. Отображая физическую систему (объект) на математическую систему (например, математический аппарат уравнений) получим физико - математическую модель системы или математическую модель физической системы. В частности, физиологическая система - система кровообращения человека, подчиняется некоторым законам термодинамики и описав эту систему на физическом (термодинамическом) языке получим физическую, термодинамическую модель физиологической системы. Если записать эти законы на математическом языке, например, выписать соответствующие термодинамические уравнения, то получим математическую модель системы кровообращения. Эту модель можно назвать физиолого - физико - математической моделью или физико - математической моделью.
Модели, если отвлечься от областей, сфер их применения, бывают трех типов: познавательные, прагматические и инструментальные.
Познавательная модель - форма организации и представления знаний, средство соединение новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью.
Прагматическая модель - средство организации практических действий, рабочего представления целей системы для ее управления. Реальность в них подгоняется под некоторую прагматическую модель. Это, как правило, прикладные модели.
Инструментальная модель - является средством построения, исследования и/или использования прагматических и/или познавательных моделей.
Познавательные отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.
По уровню, "глубине" моделирования модели бывают эмпирические - на основе эмпирических фактов, зависимостей, теоретические - на основе математических описаний и смешанные, полуэмпирические - использующие эмпирические зависимости и математические описания.
Математическая модель М описывающая ситему S (x1,x2,...,xn; R), имеет вид: М=(z1,z2,...,zm; Q), где ziIZ, i=1,2,...,n, Q, R - множества отношений над X - множеством входных, выходных сигналов и состояний системы и Z - множеством описаний, представлений элементов и подмножеств X, соответственно.
Основные требования к модели: наглядность построения; обозримость основных его свойств и отношений; доступность ее для исследования или воспроизведения; простота исследования, воспроизведения; сохранение информации, содержавшиеся в оригинале (с точностью рассматриваемых при построении модели гипотез) и получение новой информации.
Проблема моделирования состоит из трех задач:
построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей);
исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей);
использование модели (конструктивная и конкретизируемая задача).
Модель М называется статической, если среди xi нет временного параметра t. Статическая модель в каждый момент времени дает лишь "фотографию" сиcтемы, ее срез.
Модель - динамическая, если среди xi есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.
Модель - дискретная, если она описывает поведение системы только в дискретные моменты времени.
Модель - непрерывная, если она описывает поведение системы для всех моментов времени из некоторого промежутка времени.
Модель - имитационная, если она предназначена для испытания или изучения, проигрывания возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров xi модели М.
Модель - детерминированная, если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная).
Можно говорить о различных режимах использования моделей - об имитационном режиме, о стохастическом режиме и т. д.
Модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С
Свойства любой модели таковы:
конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
упрощенность: модель отображает только существенные стороны объекта;
приблизительность: действительность отображается моделью грубо или приблизительно;
адекватность: модель успешно описывает моделируемую систему;
информативность: модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модели.
Жизненный цикл моделируемой системы:
1. Сбор информации об объекте, выдвижение гипотез, предмодельный анализ;
2. Проектирование структуры и состава моделей (подмоделей);
3. Построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;
4. Исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;
5. Исследование адекватности, устойчивости, чувствительности модели;
6. Оценка средств моделирования (затраченных ресурсов);
7. Интерпретация, анализ результатов моделирования и установление некоторых причинно - следственных связей в исследуемой системе;
8. Генерация отчетов и проектных (народно - хозяйственных) решений;
9. Уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью моделирования.