Характеристика метода статистического моделирования
В практике моделирования систем наиболее часто приходится иметь дело с объектами, которые в процессе своего функционирования содержат элементы стохастичности или подвергаются стохастическим воздействиям внешней среды. Поэтому основным методом получения результатов с помощью имитационных моделей таких стохастических систем является метод статистического моделирования на ЭВМ, использующий в качестве теоретической базы предельные теоремы теории вероятностей.
На этапе исследования и проектирования систем при построении и реализации машинных моделей (аналитических и имитационных) широко используется метод статистических испытаний (Монте-Карло), который базируется на использовании случайных чисел, т. е. возможных значений некоторой случайной величины с заданным распределением вероятностей. Статистическое моделирование представляет собой метод получения с помощью ЭВМ статистических данных о процессах, происходящих в моделируемой системе. Для получения представляющих интерес оценок характеристик моделируемой системы S с учетом воздействий внешней среды Е статистические данные обрабатываются и классифицируются с использованием методов математической статистики.
Сущность метода статистического моделирования сводится к построению для процесса функционирования исследуемой системы S некоторого моделирующего алгоритма, имитирующего поведение и взаимодействие элементов системы с учетом случайных входных воздействий и воздействий внешней среды Е, и реализации этого алгоритма с использованием программно-технических средств.
Различают две области применения метода:
1) для изучения стохастических систем;
2) для решения детерминированных задач.
Основной идеей, которая используется для решения детерминированных задач методом статистического моделирования, является замена детерминированной задачи эквивалентной схемой некоторой стохастической системы, выходные характеристики последней совпадают с результатом решения детерминированной задачи. Естественно, что при такой замене вместо точного решения задачи получается приближенное решение и погрешность уменьшается с увеличением числа испытаний (реализаций моделирующего алгоритма) N.
В результате статистического моделирования системы S получается серия частных значений искомых величин или функций, статистическая обработка которых позволяет получить сведения о поведении реального объекта или процесса в произвольные моменты времени. Если количество реализаций N достаточно велико, то полученные результаты моделирования системы приобретают статистическую устойчивость и с достаточной точностью могут быть приняты в качестве оценок искомых характеристик процесса функционирования системы S.
Теоретической основой метода статистического моделирования систем на ЭВМ являются предельные теоремы теории вероятностей.
Множества случайных явлений (событий, величин) подчиняются определенным закономерностям, позволяющим не только прогнозировать их поведение, но и количественно оценить некоторые средние их характеристики, проявляющие определенную устойчивость. Характерные закономерности наблюдаются также в распределениях случайных величин, которые образуются при сложении множества воздействий.
Принципиальное значение предельных теорем состоит в том, что они гарантируют высокое качество статистических оценок при весьма большом числе испытаний (реализаций) N. Практически приемлемые при статистическом моделировании количественные оценки характеристик систем часто могут быть получены уже при сравнительно небольших (при использовании ЭВМ) N. Статистическое моделирование систем на ЭВМ требует формирования значений случайных величин, что реализуется с помощью датчиков (генераторов) случайных чисел.
При использовании статистического моделирования независимо от природы объекта исследования (будет ли он детерминированным или стохастическим) необходимо предварительно построить стохастическую систему, выходные характеристики которой позволяют оценить искомые.